题目内容

12.平行六面体ABCD-A1B1C1D1中,AB=5,AD=3,AA1=7,∠CBA=120°,∠BAA1=∠DAA1=45°,则AC1的长等于(  )
A.83B.$\sqrt{83}$C.98$+56\sqrt{2}$D.$\sqrt{98+56\sqrt{2}}$

分析 由平行六面体的性质得$\overrightarrow{A{C}_{1}}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,由此能求出AC1的长.

解答 解:∵平行六面体ABCD-A1B1C1D1中,AB=5,AD=3,AA1=7,∠CBA=120°,∠BAA1=∠DAA1=45°,
∴$\overrightarrow{A{C}_{1}}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,
∴$\overrightarrow{A{C}_{1}}$2=($\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$)2
=${\overrightarrow{AB}}^{2}+{\overrightarrow{AD}}^{2}+{\overrightarrow{A{A}_{1}}}^{2}$+2$\overrightarrow{AB}•\overrightarrow{AD}$+2$\overrightarrow{AB}•\overrightarrow{A{A}_{1}}$+2$\overrightarrow{AD}•\overrightarrow{A{A}_{1}}$
=25+9+49+2×5×3×cos60°+2×5×7×cos45°+2×3×7×cos45°
=25+9+49+15+35$\sqrt{2}$+21$\sqrt{2}$
=98+56$\sqrt{2}$,
∴AC1的长|$\overrightarrow{A{C}_{1}}$|=$\sqrt{98+56\sqrt{2}}$.
故选:D.

点评 本题考查平行六面体中线段长的求法,是基础题,解题时要认真审题,注意空间向量加法定理的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网