题目内容
12.平行六面体ABCD-A1B1C1D1中,AB=5,AD=3,AA1=7,∠CBA=120°,∠BAA1=∠DAA1=45°,则AC1的长等于( )A. | 83 | B. | $\sqrt{83}$ | C. | 98$+56\sqrt{2}$ | D. | $\sqrt{98+56\sqrt{2}}$ |
分析 由平行六面体的性质得$\overrightarrow{A{C}_{1}}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,由此能求出AC1的长.
解答 解:∵平行六面体ABCD-A1B1C1D1中,AB=5,AD=3,AA1=7,∠CBA=120°,∠BAA1=∠DAA1=45°,
∴$\overrightarrow{A{C}_{1}}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,
∴$\overrightarrow{A{C}_{1}}$2=($\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$)2
=${\overrightarrow{AB}}^{2}+{\overrightarrow{AD}}^{2}+{\overrightarrow{A{A}_{1}}}^{2}$+2$\overrightarrow{AB}•\overrightarrow{AD}$+2$\overrightarrow{AB}•\overrightarrow{A{A}_{1}}$+2$\overrightarrow{AD}•\overrightarrow{A{A}_{1}}$
=25+9+49+2×5×3×cos60°+2×5×7×cos45°+2×3×7×cos45°
=25+9+49+15+35$\sqrt{2}$+21$\sqrt{2}$
=98+56$\sqrt{2}$,
∴AC1的长|$\overrightarrow{A{C}_{1}}$|=$\sqrt{98+56\sqrt{2}}$.
故选:D.
点评 本题考查平行六面体中线段长的求法,是基础题,解题时要认真审题,注意空间向量加法定理的合理运用.
A. | $\sqrt{3}$ | B. | 4 | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{2}$ |