题目内容
已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.
分两种情况进行讨论.
(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,
a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.
∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.
(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,
∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-
(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,
a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.
∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.
(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,
∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-
要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.
练习册系列答案
相关题目