题目内容

16.函数y=${x^2}+\frac{9}{1+|x|}$是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

分析 求得函数的定义域为R,计算f(-x),可得f(-x)=f(x),即可判断f(x)的奇偶性.

解答 解:函数y=${x^2}+\frac{9}{1+|x|}$,
由1+|x|≠0,可得x∈R,
即有函数的定义域关于原点对称,
又f(-x)=(-x)2+$\frac{9}{1+|-x|}$=${x^2}+\frac{9}{1+|x|}$,
即有f(-x)=f(x),
则f(x)为偶函数.
故选:B.

点评 本题考查函数的奇偶性的判断,注意运用定义判断,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网