题目内容
4.若函数f(x)=cos(asinx)-sin(bcosx)没有零点,则a2+b2的取值范围是( )A. | [0,1) | B. | [0,π2) | C. | $[0\;,\;\frac{π^2}{4})$ | D. | [0,π) |
分析 先假设函数存在零点x0,得出方程:$\sqrt{a^2+b^2}$sin(x0+φ)=2kπ+$\frac{π}{2}$,再根据三角函数的性质得出结果.
解答 解:假设函数f(x)存在零点x0,即f(x0)=0,
由题意,cos(asinx0)=sin(bcosx0),
根据诱导公式得:asinx0+bcosx0=2kπ+$\frac{π}{2}$,
即,$\sqrt{a^2+b^2}$sin(x0+φ)=2kπ+$\frac{π}{2}$(k∈Z),
要使该方程有解,则$\sqrt{a^2+b^2}$≥|2kπ+$\frac{π}{2}$|min,
即,$\sqrt{a^2+b^2}$≥$\frac{π}{2}$(k=0,取得最小),
所以,a2+b2≥$\frac{π^2}{4}$,
因此,当原函数f(x)没有零点时,a2+b2<$\frac{π^2}{4}$,
所以,a2+b2的取值范围是:[0,$\frac{π^2}{4}$).
故答案为:C.
点评 本题主要考查了函数零点的判定,涉及三角函数的诱导公式,辅助角公式,方程有解条件的转化,以及运用假设的方式分析和解决问题,属于难题.
练习册系列答案
相关题目
15.已知f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$是(-∞,+∞)上的增函数,那么实数a的取值范围是( )
A. | (1,3) | B. | (1,2) | C. | [2,3) | D. | (3,+∞) |
12.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为( )
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
19.已知F1,F2为双曲线C:x2-$\frac{y^2}{3}$=1的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
16.函数y=${x^2}+\frac{9}{1+|x|}$是( )
A. | 奇函数 | B. | 偶函数 | ||
C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |