题目内容
14.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(3x-1)成立的x的取值范围是($\frac{1}{4}$,$\frac{1}{2}$).分析 根据函数的表达式可知函数f(x)为偶函数,判断函数在x大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,可得|x|>|3x-1|,解绝对值不等式即可.
解答 解:f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,定义域为R,
∵f(-x)=f(x),
∴函数f(x)为偶函数,
当x>0时,f(x)=ln(1+x)-$\frac{1}{1+{x}^{2}}$值函数单调递增,
根据偶函数性质可知:得f(x)>f(3x-1)成立,
∴|x|>|3x-1|,
∴x2>(3x-1)2,
∴x的范围为($\frac{1}{4}$,$\frac{1}{2}$),
故答案为($\frac{1}{4}$,$\frac{1}{2}$).
点评 考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.
练习册系列答案
相关题目
3.若函数f(x)=ax-b的图象如图所示,则( )

| A. | a>1,b>1 | B. | a>1,0<b<1 | C. | 0<a<1,b>1 | D. | 0<a<1,0<b<1 |