题目内容

【题目】在平面直角坐标系xOy中,圆C的方程为x2y28x150,若直线ykx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是____________

【答案】

【解析】C的方程可化为(x4)2y21C的圆心为(40),半径为1.由题意知,直线ykx2上至少存在一点A(x0kx02),以该点为圆心,1为半径的圆与圆C有公共点,存在x0∈R,使得AC≤11成立,即ACmin≤2.

ACmin即为点C到直线ykx2的距离

≤2,解得0≤k≤.k的最大值是.

型】填空
束】
15

【题目】在平面直角坐标系中,直线

(1)若直线与直线平行,求实数的值;

(2)若 ,点在直线上,已知的中点在轴上,求点的坐标.

【答案】(1);(2

【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出的值;(2)根据时,直线的方程设出点的坐标,由此求出的中点坐标,再由中点在轴上求出点的坐标.

试题解析:(1)∵直线与直线平行,

,经检验知,满足题意.

(2)由题意可知:

,则的中点为

的中点在轴上,∴

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网