题目内容
已知![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_ST/0.png)
(1)当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_ST/2.png)
(2)当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_ST/4.png)
【答案】分析:(1)根据函数
,
,我们可给出函数的解析式,根据三角恒等变换,我们可将函数的解析式化为余弦型函数的形式,进而根据T=
,求出函数的最小正周期.
(2)因为
,我们易结合
,再根据α-x、α+x是锐角,我们易求出α-x、α+x的三角函数值,再根据2α=(α-x)+(α+x),求出cos2α的值.
解答:解:(1)∵
,
所以
=
.
又∵
,
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/9.png)
=
.
所以该函数的最小正周期是π.
(2)因为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/11.png)
所以![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/12.png)
∵α-x是锐角
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/13.png)
∵
∥![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/15.png)
∴
,即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/17.png)
∵α+x是锐角
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/18.png)
∴cos2α=cos[(α+x)+(α-x)]=cos(α+x)cos(α-x)-sin(α+x)sin(α-x)
=
,即cos2α=
.
点评:本题考查的知识点是平面向量的数量积运算,三角函数恒等变换,平行(共线)向量,两角和的余弦公式,解答的关键(1)中要将函数的解析式化为余弦型函数的形式,(2)中关键是分析已知角与未知角的关系.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/2.png)
(2)因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/4.png)
解答:解:(1)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/5.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/7.png)
又∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/8.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/9.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/10.png)
所以该函数的最小正周期是π.
(2)因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/11.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/12.png)
∵α-x是锐角
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/13.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/15.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/17.png)
∵α+x是锐角
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/18.png)
∴cos2α=cos[(α+x)+(α-x)]=cos(α+x)cos(α-x)-sin(α+x)sin(α-x)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102557865534865/SYS201311031025578655348016_DA/20.png)
点评:本题考查的知识点是平面向量的数量积运算,三角函数恒等变换,平行(共线)向量,两角和的余弦公式,解答的关键(1)中要将函数的解析式化为余弦型函数的形式,(2)中关键是分析已知角与未知角的关系.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目