题目内容

5.已知A 为椭圆上一点,E,F 分别为椭圆的左右焦点,∠EAF=90°,设AE 的延长线交椭圆于B,又|AB|=|AF|,则椭圆的离心率e为(  )
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

分析 由题意画出图形,利用|AB|=|AF|,△AEF,△ABF为直角三角形及椭圆的定义列式求得椭圆的离心率.

解答 解:如图,
设|AF|=m,|AE|=n,
∵|AB|=|AF|,且∠EAF=90°,
∴|BF|=$\sqrt{2}m$,
又|BE|=m-n,
∴$\sqrt{2}m+m-n=2a$,
与m+n=2a联立,可得$m=\frac{4a}{2+\sqrt{2}},n=\frac{2\sqrt{2}a}{2+\sqrt{2}}$,
代入m2+n2=4c2
可得$\frac{16{a}^{2}}{(2+\sqrt{2})^{2}}+\frac{8{a}^{2}}{(2+\sqrt{2})^{2}}=4{c}^{2}$,
∴$6{a}^{2}=(2+\sqrt{2})^{2}{c}^{2}$,则${e}^{2}=\frac{6}{(2+\sqrt{2})^{2}}$,
∴e=$\frac{\sqrt{6}}{2+\sqrt{2}}=\frac{\sqrt{6}(2-\sqrt{2})}{2}=\sqrt{6}-\sqrt{3}$.
故选:A.

点评 本题主要考查圆锥曲线的定义的应用,试题在平面几何中的勾股定理、等腰三角形和圆锥曲线的定义之间进行了充分的交汇,在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口,此题是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网