题目内容

15.如果不等式x2<|x-1|+a的解集是区间(-3,3)的子集,则实数a的取值范围是(  )
A.(-∞,7)B.(-∞,7]C.(-∞,5)D.(-∞,5]

分析 要解的不等式等价于x2-|x-1|-a<0,设f(x)=x2-|x-1|-a,则由题意可得$\left\{\begin{array}{l}{f(-3)=5-a≥0}\\{f(3)=7-a≥0}\end{array}\right.$,由此求得a的范围.

解答 解:不等式x2<|x-1|+a等价于x2-|x-1|-a<0,
设f(x)=x2-|x-1|-a,
若不等式x2<|x-1|+a的解集是区间(-3,3)的子集,则$\left\{\begin{array}{l}{f(-3)=5-a≥0}\\{f(3)=7-a≥0}\end{array}\right.$,
求得a≤5,
故选:D.

点评 本题主要考查绝对值不等式的解法,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网