题目内容

(2013•东莞一模)已知函数f(x)=
(
1
3
)
x
,x≥3
f(x+1),x<3
,则f(2+log32)的值为(  )
分析:先确定2+log32的范围,从而确定f(2+log32)的值
解答:解:∵2+log31<2+log32<2+log33,即2<2+log32<3
∴f(2+log32)=f(2+log32+1)=f(3+log32)
又3<3+log32<4
∴f(3+log32)=(
1
3
)
3+log32
=(
1
3
)
3
×(
1
3
)
log32
=
1
27
×(3-1)log32
=
1
27
×3-log32=
1
27
×3log3
1
2
=
1
27
×
1
2
=
1
54

∴f(2+log32)=
1
54

故选B
点评:本题考查指数运算和对数运算,要求能熟练应用指数运算法则和对数运算法则.属简单题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网