题目内容
【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线与交于,两点,与交于,两点.当时,;当,.
(1)求和的值.
(2)求的最大值.
【答案】(1),(2)
【解析】
(Ⅰ)由曲线消去参数,得到曲线的普通方程,再由极坐标方程与直角的互化公式,得到曲线的极坐标方程,由题意可得当时,得,当时,.
(Ⅱ)由(Ⅰ)可得,的极坐标方程,进而得到的表达式,利用三角函数的性质,即可求解.
(Ⅰ)由曲线:(为参数,实数),
化为普通方程为,展开为:,
其极坐标方程为,即,由题意可得当时,,∴.
曲线:(为参数,实数),
化为普通方程为,展开可得极坐标方程为,
由题意可得当时,,∴.
(Ⅱ)由(Ⅰ)可得,的极坐标方程分别为,.
∴
,
∵,∴的最大值为,
当,时取到最大值.
【题目】已知:曲线表示双曲线;:曲线表示焦点在轴上的椭圆.
(1)分别求出条件中的实数的取值范围;
(2)甲同学认为“是的充分条件”,乙同学认为“是的必要条件”,请判断两位同学的说法是否正确,并说明理由.
【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
空调类 | 冰箱类 | 小家电类 | 其它类 | |
营业收入占比 | ||||
净利润占比 |
则下列判断中不正确的是( )
A. 该公司2018年度冰箱类电器营销亏损
B. 该公司2018年度小家电类电器营业收入和净利润相同
C. 该公司2018年度净利润主要由空调类电器销售提供
D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得
P(K2>k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,得到的正确结论是( )
A.有99.5%以上的把握认为“爱好该项运动与性别无关”
B.有99.5%以上的把握认为“爱好该项运动与性别有关”
C.在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”