题目内容
11.定义在R上的偶函数f(x)的周期为2,0<x<1,f(x)=-log2(1-x),则当1<x<2,下面说法正确的是( )A. | f(x)单调递增,f(x)<0 | B. | f(x)单调递增,f(x)>0 | C. | f(x)单调递减,f(x)<0 | D. | f(x)单调递减,f(x)>0 |
分析 根据函数的奇偶性以及单调性求出函数在(1,2)的解析式,再结合对数函数的性质判断即可.
解答 解:设m∈(-1,0),则-m∈(0,1),
故f(-m)=-log2(1-(-m))=-log2(1+m);
又f(x)为偶函数,故f(m)=f(-m)=-log2(1+m),(m∈(-1,0));
设n∈(1,2),则n-2∈(-1,0),故f(n-2)=-log2(1+(n-2))=-log2(n-1);
又f(n)为周期为2函数,故f(n)=f(n-2)=-log2(n-1)(n∈(1,2)).
故f(x)在(1,2)上是减函数,且大于零,
故选:D.
点评 本题考查了函数的单调性、奇偶性问题,考查对数函数的性质,是一道中档题.
练习册系列答案
相关题目
2.记复平面内复数$\sqrt{3}$+i的向量为$\overrightarrow{a}$,复数-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i对应的向量为$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
A. | 150° | B. | 120° | C. | 60° | D. | 30° |
19.已知函数f(x)=$\frac{x}{1+|x|}$(x∈R) 时,则下列结论正确的是( )
(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2)
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.
(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2)
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.
A. | (1)(2) | B. | (2)(3) | C. | (1)(2)(3) | D. | (1)(3)(4) |
20.若|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=5,则|$\overrightarrow{AC}$|的取值范围是( )
A. | [3,7] | B. | (3,7) | C. | [2,5] | D. | (2,5) |