题目内容
已知AB是抛物线y2=ax(a>0)焦点弦,且A(x1,y1),B(x2,y2),点F是抛物线的焦点,则有
+
=
.
1 |
|AF| |
1 |
|BF| |
4 |
a |
4 |
a |
分析:由题意利用抛物线的定义可得|AF|=x1+
,|BF|=x2+
.把AB的方程y-0=k(x-
)代入抛物线y2=ax(a>0)可得 k2x2-
x-
=0,
可得 x1•x2=
.化简
+
=
+
,求得结果.
a |
4 |
a |
4 |
a |
4 |
3a |
2 |
k2•a2 |
16 |
可得 x1•x2=
a2 |
16 |
1 |
|AF| |
1 |
|BF| |
1 | ||
x1+
|
1 | ||
x2+
|
解答:解:由题意利用抛物线的定义可得|AF|=x1+
,|BF|=x2+
.
把AB的方程y-0=k(x-
)代入抛物线y2=ax(a>0)可得 k2x2-
x-
=0,∴x1•x2=
.
∴
+
=
+
=
=
=
=
=
,
故答案为
.
a |
4 |
a |
4 |
把AB的方程y-0=k(x-
a |
4 |
3a |
2 |
k2•a2 |
16 |
a2 |
16 |
∴
1 |
|AF| |
1 |
|BF| |
1 | ||
x1+
|
1 | ||
x2+
|
x1+x2+
| ||||
(x1+
|
x1+x2+
| ||||
x1• x2+
|
x1+x2+
| ||||
|
=
x1+x2+
| ||||
|
4 |
a |
故答案为
4 |
a |
点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目