题目内容

已知函数f(x)满足f(
1
x
)=x+2

(Ⅰ)求f(x)的解析式及其定义域;
(Ⅱ)写出f(x)的单调区间并证明.
(Ⅰ)令
1
x
=t,(t≠0)
,--------(2分)
x=
1
t
,-------(4分)
f(t)=
1
t
+2(t≠0)
,∴f(x)=
1
x
+2(x≠0)
.-----(6分)
(Ⅱ)函数f(x)在区间(-∞,0)和(0,+∞)单调递减.-----(7分)
设x1,x2∈(-∞,0)∪(0,+∞),x1<x2,△x=x2-x1>0,-------(8分)
△y=f(x2)-f(x1)=
1
x2
+2-
1
x1
-2=
x1-x2
x1x2
=
-△x
x1x2
.--------(10分)
当x1<x2<0时,x1x2>0,又△x>0,∴△y<0;
同理,当0<x1<x2时△y<0,
∴函数f(x)在区间(-∞,0)和(0,+∞)单调递减.-------(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网