题目内容

已知函数f(x)=
1
3
x3-
1
2
x2+cx+d在x=2处取得极值.
(1)求c的值;
(2)当x<0时,f(x)<
1
6
d2+2d恒成立,求d的取值范围.
(1)∵f(x)在x=2处取得极值,
∴f′(2)=4-2+c=0,
∴c=-2.
∴f(x)=
1
3
x3-
1
2
x2-2x+d,
(2)∵f′(x)=x2-x-2=(x-2)(x+1),
∴当x∈(-∞,-1]时,f′(x)>0,函数单调递增,当x∈(-1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=-1处取得最大值
7
6
+d

∵x<0时,f(x)<
1
6
d2+2d
恒成立,
7
6
+d
1
6
d2+2d
,即(d+7)(d-1)>0,
∴d<-7或d>1,
即d的取值范围是(-∞,-7)∪(1,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网