题目内容
本题满分16分)两个数列{an},{bn},满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_ST/1.png)
求证:{bn}为等差数列的充要条件是{an}为等差数列.
【答案】分析:由条件可得
bn+1-
bn=an+1 ,
bn-
bn-1=an,相减可得 an+1 -an═
(bn+1-bn )+
(bn+1-bn )-
(bn-bn-1),由于{bn}为等差数列的充要条件是 bn+1-bn=bn-bn-1=常数d,此时an+1 -an=
d+
-
=
,是个常数,从而结论成立.
解答:证明:∵
,∴bn+1=
,
∴
bn=a1+2a2+3a3+…+nan ①,
bn+1=a1+2a2+3a3+…+nan+(n+1)an+1.②
②减去①可得
bn+1-
bn=(n+1)an+1.
两边同时除以n+1可得
bn+1-
bn=an+1 ③,
∴
bn-
bn-1=an ④.
③减去④可得 an+1 -an=(
bn+1 -
bn )-(
bn -
bn-1 )
=
bn+1 +bn+1 -
bn-
bn-
bn+
bn-1-
bn-1
=
(bn+1-bn )+
(bn+1-bn )+
(bn-bn-1)-
(bn-bn-1)
=
(bn+1-bn )+
(bn+1-bn )-
(bn-bn-1).
由于{bn}为等差数列的充要条件是 bn+1-bn=bn-bn-1=常数d,
此时an+1 -an=
d+
-
=
,是个常数.
故:{bn}为等差数列的充要条件是{an}为等差数列.
点评:本题主要考查用分析法和综合法证明数学命题,体现了等价转化的数学思想,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/10.png)
解答:证明:∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/12.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/14.png)
②减去①可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/16.png)
两边同时除以n+1可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/18.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/20.png)
③减去④可得 an+1 -an=(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/24.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/30.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/34.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/37.png)
由于{bn}为等差数列的充要条件是 bn+1-bn=bn-bn-1=常数d,
此时an+1 -an=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/38.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231941115843773/SYS201311012319411158437018_DA/41.png)
故:{bn}为等差数列的充要条件是{an}为等差数列.
点评:本题主要考查用分析法和综合法证明数学命题,体现了等价转化的数学思想,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目