题目内容
在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤).
(1)若⊥a,且||=||(O为坐标原点),求向量.
(2)若向量与向量a共线,当k>4,且tsinθ取最大值4时,求·.
(1) =(24,8)或=(-8,-8) (2) 32
【解析】(1)可得=(n-8,t),
∵⊥a,∴·a=(n-8,t)·(-1,2)=0,
得n=2t+8,则=(2t,t).
又||=||,||=8.
∴(2t)2+t2=5×64,解得t=±8,
当t=8时,n=24;当t=-8时,n=-8.
∴=(24,8)或=(-8,-8).
(2)∵向量与向量a共线,
∴t=-2ksinθ+16,
tsinθ=(-2ksinθ+16)sinθ
=-2k(sinθ-)2+.
∵k>4,∴0<<1,故当sinθ=时,tsinθ取最大值,有=4,得k=8.
这时,sinθ=,k=8,tsinθ=4,得t=8,
则=(4,8),
∴·=(8,0)·(4,8)=32.
练习册系列答案
相关题目