题目内容

11.已知M(-1,2)为椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1内一点,直线l过点M,交椭圆于A,B两点,且M为弦AB的中点,求l的方程.

分析 设以点M(-1,2)为中点的弦与椭圆交于A(x1,y1),B(x2,y2),利用点差法能求出结果.

解答 解:设以点M(-1,2)为中点的弦与椭圆交于A(x1,y1),B(x2,y2),
则x1+x2=-2,y1+y2=4,
分别把M(x1,y1),N(x2,y2)代入椭圆方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1,
可得$\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{16}=1$,$\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{16}=1$.
再相减可得(x1+x2)(x1-x2)+$\frac{1}{4}$(y1+y2)(y1-y2)=0,
∴-2(x1-x2)+(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=2,
∴点M(-1,2)为中点的弦所在直线方程l的方程为:y-2=2(x+1),
整理,得:2x-y+4=0.
所求直线方程为:2x-y+4=0.

点评 本题考查直线方程的求法,直线与椭圆的位置关系的综合应用,是中档题,解题时要认真审题,注意点差法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网