题目内容
【题目】已知函数f(x)= +lnx﹣3有两个零点x1 , x2(x1<x2) (Ⅰ)求证:0<a<e2
(Ⅱ)求证:x1+x2>2a.
【答案】证明:(Ⅰ)函数f(x)的定义域是(0,+∞), f′(x)= ,
①a≤0时,f′(x)≥0,
∴f(x)在区间(0,+∞)上是增函数,
不可能有2个零点;
②a>0时,在区间(0,a)上,f′(x)<0,在区间(a,+∞)上,f′(x)>0,
∴f(x)在区间(0,a)递减,在区间(a,+∞)递增;
f(x)的最小值是f(a)=lna﹣2,
由题意得:有f(a)<0,则0<a<e2;
(Ⅱ)要证x1+x2>2a,只要证x2>2a﹣x1 ,
易知x2>a,2a﹣x1>a,
而f(x)在区间(a,+∞)递增,
∴只要证明f(x2)>f(2a﹣x1),
即证f(x2)>f(2a﹣x1),
设函数g(x)=f(x)﹣f(2a﹣x),
则g(a)=0,且区间(0,a)上,
g′(x)=f′(x)+f′(2a﹣x)= <0,
即g(x)在(0,a)递减,
∴g(x1)>g(a)=0,
而g(x1)=f(x1)﹣f(2a﹣x1)>0,
∴f(x2)>f(2a﹣x1)成立,
∴x1+x2>2a.
【解析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间,从而求出函数的最小值,求出a的范围即可;(Ⅱ)问题转化为证明f(x2)>f(2a﹣x1),设函数g(x)=f(x)﹣f(2a﹣x),根据函数的单调性证明即可.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.