题目内容
【题目】已知数列{an},{bn}满足 , ,其中n∈N+ . (I)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(II)设 ,求数列{cncn+2}的前n项和为Tn .
【答案】(Ⅰ)证明:∵ = = ,
∴数列{bn}是公差为2的等差数列,
又 ,∴bn=2+(n﹣1)×2=2n,
∴ ,解得 . …
(Ⅱ)解:由(Ⅰ)可得 ,
∴ ,
∴数列{cncn+2}的前n项和为
= .
【解析】(I)作差利用递推关系、等差数列的通项公式即可得出.(II)利用“裂项求和”方法即可得出.
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目
【题目】乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:
试验田 | 试验田1 | 试验田2 | 试验田3 | 试验田4 | 试验田5 |
死亡数 | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求的概率.