题目内容
(1)求极限lim |
n→∞ |
1 |
2x |
(2)设y=xln(1+x2),求y'
分析:(1)先把(1-2x)x转化为[(1-
)-2x]-
,然后再利用公式进行求解.
(2)根据导数的运算法则和复合函数的求导原则直接计算能够求出y'.
1 |
2x |
1 |
2 |
(2)根据导数的运算法则和复合函数的求导原则直接计算能够求出y'.
解答:解:(1)
(1-
)x=
[(1-
)-2x]-
=e-
(2)y′=ln(1+x2)+
.
lim |
n→∞ |
1 |
2x |
lim |
n→∞ |
1 |
2x |
1 |
2 |
1 |
2 |
(2)y′=ln(1+x2)+
2x2 |
1+x2 |
点评:第一小题考查函数的极限问题,第二小题考查函数的求导问题,解题时要注意公式的灵活运用.
练习册系列答案
相关题目