题目内容
【题目】已知:关于x的不等式(mx-(m+1))(x-2)>0(mR)的解集为集合P
(I)当m>0时,求集合P;
(II)若{}P,求m的取值范围.
【答案】(I)见解析;(II)
【解析】
(I)通过比较两根大小进行分类讨论,利用二次函数的图像即可得到不等式的解集;
(Ⅲ)依题意,当x∈(-3,2)时,不等式(mx-(m+1))(x-2)>0恒成立,分类讨论即可求出m的范围.
(I)当m>0时,原不等式变为
当0<m<1时,>2,不等式的解为x<2或;
当m=1时,=2,不等式的解为x<2或x>2;
当m>1时,<2,不等式的解为x<或x>2;
综上所述,当0<m≤1时,P=(-,2)(,+),
当m>l时,P=(-,)(2,+)。
(II)当m>0时,由(I)知,满足{x|-3<x<2}P,需要0<m≤1;
当m=0时,不等式变为,则P=(-,2),满足条件;
当m<0时,不等式变为,此时<2,则P=(,2)
满足{x|-3<x<2}P,需要≤,则,
综上所述:
练习册系列答案
相关题目