题目内容

已知sinα+cosα=
1
2
,求下列各式的值:
(1)sin3α+cos3α;
(2)sin4α+cos4α.
分析:sinα+cosα=
1
2
两边同时平方可得,1+2sinαcosα=
1
2
,从而可得sinαcosα=-
1
4

(1)sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)结合sinαcosα=-
1
4
及sin2α+cos2α=1代入可求
(2)sin4α+cos4α=(sin2α+cos2α)2-2(sinαcosα)2结合sinαcosα=-
1
4
及sin2α+cos2α=1代入可求
解答:解:∵sinα+cosα=
1
2

两边同时平方可得,1+2sinαcosα=
1
2

sinαcosα=-
1
4

(1)sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)
=
1
2
× (1+
1
4
)
=
5
2
8

(2))sin4α+cos4α=(sin2α+cos2α)2-2(sinαcosα)2
=1-2×
1
16
=
7
8
点评:本题主要考查了同角平方关系的应用,解题中要注意 一些常见式子的变形形式,属于公式的基本应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网