题目内容

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1.x≤0}\\{1,x>0}\end{array}\right.$,试求满足f(1-x2)>f(-2x)的x的集合.

分析 根据分段函数的表达式,结合函数值的大小比较,利用分类讨论进行求解即可.

解答 解:作出函数f(x)的图象如图
∵1-x2≤1,
∴若1-x2>0,即-1<x<1时,f(1-x2)=1,此时不等式不成立,
若x=1,不等式f(1-x2)>f(-2x)等价为f(0)>f(-2)不成立,
若x=-1,不等式f(1-x2)>f(-2x)等价为f(0)>f(2)不成立,
若x>1,-2x<-2,1-x2<0,
此时不等式f(1-x2)>f(-2x)等价为$\left\{\begin{array}{l}{x>1}\\{1-{x}^{2}<-2x}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>1}\\{{x}^{2}-2x-1>0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>1}\\{x>1+\sqrt{2}或x<1-\sqrt{2}}\end{array}\right.$,解得x>1+$\sqrt{2}$,
若x<-1,-2x>2,1-x2<0,
则f(-2x)=1,f(-x2)>1,此时不等式f(1-x2)>f(-2x)恒成立,
综上x<-1或x>1+$\sqrt{2}$,
故不等式的解集为(1+$\sqrt{2}$,+∞)∪(-∞,-1).

点评 本题主要考查不等式的求解,利用分段函数的表达式,利用分类讨论是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网