题目内容

(本小题12分)等差数列的前项和记为,已知.
(1)求数列的通项;(2)若,求;(3)令,求数列的前项和

(1);(2);(3) 

解析试题分析:(1)由可建立关于a1和d的方程,解出a1和d的值,得到数列的通项.(2)根据可建立关于n的方程解出n的值.
(3)因为,显然应采用错位相减的方法求和.
(1)由,得方程组, 
解得      .....................3分
(2)由得方程 
解得(舍去),                .....................6分
(3)                 .....................7分

           .....................9分
两式相减得:               .....................10分

=-                   .....................12分
考点:等差数列的通项公式及前n项和公式,以及错位相减法求和.
点评:错位相减法求和主要适应用一个等差数列与一个等比数列对应项的积构成的数列,其前n项和可考虑错位相减法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网