题目内容
已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”.
我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.
(Ⅰ)已知函数,若且,求实数的取值范围;
(Ⅱ)已知,且的部分函数值由下表给出,
|
|
|
|
|
|
|
|
|
|
求证:;
(Ⅲ)定义集合
请问:是否存在常数,使得,,有成立?若存在,求出的最小值;若不存在,说明理由.
因为所以
而, 所以
所以 ………………8分
(Ⅲ) 因为集合
所以,存在常数,使得 对成立
我们先证明对成立
假设使得,
记
因为是二阶比增函数,即是增函数.
所以当时,,所以
所以一定可以找到一个,使得
练习册系列答案
相关题目
已知函数的定义域为,部分对应值如下表。的导函数的图像如图所示。
0 |
|||||
下列关于函数的命题:
①函数在上是减函数;②如果当时,最大值是,那么的最大值为;③函数有个零点,则;④已知是的一个单调递减区间,则的最大值为。
其中真命题的个数是( )
A、4个 B、3个 C、2个 D、1个