题目内容
(本小题满分12分)设,当时,对应值的集合为.(1)求的值;(2)若,求该函数的最值.
(1).(2)当时,该函数取得最大值
解析
已知二次函数的零点是-1和3,当时,,且。(1)求该二次函数的解析式;(2)求函数的最大值。
(本小题满分12分)计算:(1)0.25×-4÷;(2).
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
(本小题满分12分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶. 假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行时间应为多少小时?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
本小题满分10分解关于的不等式(,且).
已知,,其中是自然常数).(Ⅰ)求的单调性和极小值;(Ⅱ)求证:在上单调递增;(Ⅲ)求证:.
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?
(本题满分12分)某公司生产一种电了仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量。⑴将利润表示为月产量的函数。⑵当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益―总成本=利润)