题目内容
【题目】已知f(x)是定义在R上的奇函数,且在(0,+∞)是增函数,又f(﹣3)=0,则不等式xf(x)≥0的解集是( )
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}
【答案】D
【解析】解:由题意得:∵f(﹣3)=﹣f(3)=0,∴f(3)=0,又f(x)在(0,+∞)上是增函数,
∴当0<x<3时,f(x)<0,当x>3时,f(x)>0,
又f(x)为定义在R上的奇函数,f(﹣3)=0,
∴当x<﹣3时,f(x)<0,当﹣3<x<0时,f(x)>0,其图象如下:
∴不等式xf(x)≥0的解集为:{x|x≤﹣3或x=0或x≥3}.
故选:D.
【考点精析】利用奇偶性与单调性的综合对题目进行判断即可得到答案,需要熟知奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
练习册系列答案
相关题目