题目内容
15.函数f(x)是偶函数且满足f(x+2)=-f(x),当x∈[0,2]时,f(x)=x-1,则不等式xf(x)<0在[-2,3]上的解集为( )A. | (1,3) | B. | (-1,1) | C. | (-1,0)∪(1,3) | D. | (-2,-1)∪(0,1) |
分析 可设x∈[0,2],从而可求出f(x+2)=-x+1,可设x+2=t,t∈[2,4],这便可得到f(t)=-t+3,而根据f(x)为偶函数,可设x∈[-2,0),从而可求得f(x)=-x-1.这样便可得出f(x)的解析式:f(x)=$\left\{\begin{array}{l}{-x-1}&{x∈[-2,0)}\\{x-1}&{x∈[0,2]}\\{-x+3}&{x∈(2,3]}\end{array}\right.$,这样即可解出不等式xf(x)<0的解集.
解答 解:设x∈[0,2],则,f(x+2)=-f(x)=-x+1;
即f(x+2)=-x+1,设x+2=t,t∈[2,4],x=t-2,则:
f(t)=-t+3;
设x∈[-2,0),-x∈(0,2],f(x)为偶函数;
∴f(-x)=-x-1=f(x);
∴$f(x)=\left\{\begin{array}{l}{-x-1}&{x∈[-2,0)}\\{x-1}&{x∈[0,2]}\\{-x+3}&{x∈(2,3]}\end{array}\right.$;
∴由xf(x)<0得,$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.,或\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$;
∴$\left\{\begin{array}{l}{0<x≤2}\\{x-1<0}\end{array}\right.$,或$\left\{\begin{array}{l}{2<x≤3}\\{-x+3<0}\end{array}\right.$或$\left\{\begin{array}{l}{-2≤x<0}\\{-x-1>0}\end{array}\right.$;
解得0<x<1,或-2≤x<-1;
∴不等式xf(x)<0在[-2,3]上的解集为(-2,-1)∪(0,1).
故选D.
点评 考查偶函数的定义,应想着求函数f(x)的解析式是求解本题的关键,将不等式变成几个不等式从而解不等式的方法.
A. | 2$\sqrt{5}$ | B. | 5 | C. | $\sqrt{10}$ | D. | $\sqrt{5}$ |
A. | 若α⊥γ,β⊥γ,则α∥β | B. | 若m⊥n,m⊥α,n∥β,则α∥β | ||
C. | 若m⊥α,m⊥β,则α∥β | D. | 若m∥n,m∥α,n∥β,则α∥β |