题目内容
【题目】设为给定的大于2的正整数,集合,已知数列:,,…,满足条件:
①当时,;
②当时,.
如果对于,有,则称为数列的一个逆序对.记数列的所有逆序对的个数为.
(1)若,写出所有可能的数列;
(2)若,求数列的个数;
(3)对于满足条件的一切数列,求所有的算术平均值.
【答案】(1)不同的分别为:;(2);(3).
【解析】
(1)根据可列出满足条件的.
(2)就构成逆序对的元素的个数分类计数可得满足条件的的个数.
(3)引进一个定义:,有,则称为数列的一个顺序对,可证明所有的中,逆序对的总数和顺序对的总数相等,从而可得逆序对的个数为,故可求其平均值.
(1)因为, 故只有一个逆序对,
则不同的分别为:.
(2)因为,故数列:,,…,有两种情况:
①2对逆序数由3个元素提供,即
,
这样的共有个.
②2对逆序数由4个元素提供,即
.
这样的共有.
综上,满足的数列的个数为.
(3)对任意的:,,…,,其逆序对的个数为,
我们引进一个定义:,有,则称为数列的一个顺序对,
则中的顺序对个数为.
考虑:,,…,与:,,…,,
中的逆序对的个数为中顺序对的个数,中顺序对的个数为中逆序对个数,
把所有的按如上形式两两分类,则可得所有的中,逆序对的总数和顺序对的总数相等,而它们的和为,故逆序对的个数为,
所以所有的算术平均值为.
【题目】以昆明、玉溪为中心的滇中地区,冬无严寒、夏无酷暑,世界上主要的鲜切花品种在这里都能实现周年规模化生产.某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰,由于库房限制每天最多加工6箱.
(1)若某天该鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,则恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的概率是多少?
(2)该鲜花批发店统计了100天内该种玫瑰在每天下午3点以前的销售量(单位:箱),统计结果如下表所示(视频率为概率):
/箱 | 4 | 5 | 6 |
频数 | 30 |
①估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是多少?
②若批发店每天在购进5箱数量的玫瑰时所获得的平均利润最大(不考虑其他成本),求的取值范围.