题目内容
(2012•奉贤区二模)已知cos(x-
)=-
,则cosx+cos(x-
)=
π |
6 |
| ||
3 |
π |
3 |
-1
-1
.分析:利用两角和与差的余弦函数将cosx+cos(x-
)化为
cos(x-
)即可.
π |
3 |
3 |
π |
6 |
解答:解:∵cos(x-
)=-
,
∴cosx+cos(x-
)
=cosx+cosxcos
+sinxsin
=
cosx+
sinx
=
(
cosx+
sinx)
=
cos(x-
)
=
×(-
)
=-1.
故答案为:-1.
π |
6 |
| ||
3 |
∴cosx+cos(x-
π |
3 |
=cosx+cosxcos
π |
3 |
π |
3 |
=
3 |
2 |
| ||
2 |
=
3 |
| ||
2 |
1 |
2 |
=
3 |
π |
6 |
=
3 |
| ||
3 |
=-1.
故答案为:-1.
点评:本题考查两角和与差的余弦函数,将cosx+cos(x-
)化为
cos(x-
)是关键,考查分析转化与运算能力,属于中档题.
π |
3 |
3 |
π |
6 |
练习册系列答案
相关题目