题目内容
设函数为定义在上的奇函数.
(1)求实数的值;
(2)判断函数在区间上的单调性,并用定义法证明.
已知函数是单调递增函数,其反函数是.
(1)若,求并写出定义域;
(2)对于(1)的和,设任意,,,求证:;
(3)求证:若和有交点,那么交点一定在上.
在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A., B.,
C., D.,
某学校有男学生400名,女学生600名,为了解男女学生在学校兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( )
A.抽签法 B.随机数法
C.系统抽样法 D.分层抽样法
选修4-4:坐标系与参数方程
以直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系,直线的参数方程为(为参数),曲线的方程为,定点,点是曲线上的动点,为的中点.
(1)求点的轨迹的直角坐标方程;
(2)直线与曲线相交于两点,若,求实数的取值范围.
已知函数的最大值为,则等于( )
A. B. C. D.
函数的零点所在区间为( )
在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出名记者提问,且这4人中,既有甲电视台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为( )
A.1200 B.2400 C.3000 D.3600
空气质量指数(Air Quality Index,简称)是定量描述空气质量状况的指数,空气质量按照大小分为六级,为优;为轻度污染;为中度污染;为重度污染;为严重污染.一环保人士记录去年某地某月10天的的茎叶图如右.
(1)利用该样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算)
(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为,求的概率分布列和数学期望.