ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªº¯Êýf£¨x£©=ax2-£¨a+2£©x+lnx£¨x£¾0£¬ÆäÖÐaΪʵÊý£©£®£¨¢ñ£©µ±a=1ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©µ±a£¾0ʱ£¬Èôf£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×îСֵΪ-2£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èôg£¨x£©=f£¨x£©-ax2+£¨a+2£©xʱ£¬ÁîF£¨x£©=g£¨x£©+g¡ä£¨x£©£¬¸ø¶¨x1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1£¼x2£¬¶ÔÓÚÁ½¸ö´óÓÚ1µÄÕýÊý¦Á£¬¦Â£¬´æÔÚʵÊýmÂú×㣺¦Á=mx1+£¨1-m£©x2£¬¦Â=£¨1-m£©x1+mx2£¬²¢ÇÒʹµÃ²»µÈʽ|F£¨¦Á£©-F£¨¦Â£©|£¼|F£¨x1£©-F£¨x2£©|ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©µ±a=1ʱ£¬Çó³öf'£¨1£©¼°f£¨1£©¼´¿É£»
£¨¢ò£©µ±a£¾0ʱÁîf'£¨x£©=0£¬½âÖ®µÃ$x=\frac{1}{2}$»ò$x=\frac{1}{a}$£®×ÛºÏ$0£¼\frac{1}{a}¡Ü1$¡¢$1£¼\frac{1}{a}£¼e$¡¢$\frac{1}{a}¡Ýe$ÈýÖÖÇé¿ö¿¼ÂǼ´¿É£®
£¨¢ó£©ÏÈÅжÏF£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬´Ó¶øµ±x¡Ý1ʱ£¬F£¨x£©£¾0£¬ÔÙ×ÛºÏm¡Ê£¨0£¬1£©¡¢m¡Ü0¡¢m¡Ý1ÈýÖÖÇé¿ö¼´¿ÉµÃʵÊýmµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©µ±a=1ʱ£¬$f£¨x£©={x^2}-3x+lnx£¬{f^'}£¨x£©=2x-3+\frac{1}{x}$£®
ÒòΪf'£¨1£©=0£¬f£¨1£©=-2£¬ËùÒÔÇÐÏß·½³ÌÊÇy=-2£»
£¨¢ò£©$f¡ä£¨x£©=2ax-£¨a+2£©+\frac{1}{x}$=$\frac{2a{x}^{2}-£¨a+2£©x+1}{x}$=$\frac{£¨2x-1£©£¨ax-1£©}{x}$£¨x£¾0£©
ÒòΪa£¾0£¬¹ÊÁîf'£¨x£©=0£¬µÃ$x=\frac{1}{2}$»ò$x=\frac{1}{a}$£®
£¨1£©µ±$0£¼\frac{1}{a}¡Ü1$£¬¼´a¡Ý1ʱ£¬f£¨x£©ÔÚ[1£¬e]Éϵ¥µ÷µÝÔö£¬
ËùÒÔf£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵÊÇf£¨1£©=-2£¬ÊʺÏÌâÒ⣻
£¨2£©µ±$1£¼\frac{1}{a}£¼e$ʱ£¬ÔÚ$[1£¬\frac{1}{a}]$ÉÏf'£¨x£©£¼0£¬f£¨x£©µ¥µ÷µÝ¼õ£¬
ÔÚ$[\frac{1}{a}£¬e]$ÉÏf'£¨x£©£¾0£¬f£¨x£©µ¥µ÷µÝÔö£¬
ËùÒÔf£¨x£©µÄ×îСֵÊÇ$f£¨\frac{1}{a}£©£¼f£¨1£©=-2$£¬²»ºÏÌâÒ⣻
£¨3£©µ±$\frac{1}{a}¡Ýe$ʱ£¬f£¨x£©ÔÚ£¨1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ËùÒÔ£¬f£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵÊÇf£¨e£©£¼f£¨1£©=-2£¬²»ºÏÌâÒ⣬
×ÛÉÏ¿ÉÖª£¬aµÄÈ¡Öµ·¶Î§ÊÇ[1£¬+¡Þ£©£®
£¨¢ó£©$F£¨x£©=g£¨x£©+g'£¨x£©=lnx+\frac{1}{x}$£¬
ÓÉ$F¡ä£¨x£©=\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}¡Ý0$¿ÉµÃx¡Ý1£¬
ËùÒÔF£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àµ±x¡Ý1ʱ£¬F£¨x£©¡ÝF£¨1£©£¾0£¬
¢Ùµ±m¡Ê£¨0£¬1£©Ê±£¬ÓЦÁ=mx1+£¨1-m£©x2£¾mx1+£¨1-m£©x1=x1£¬
¦Á=mx1+£¨1-m£©x2£¼mx2+£¨1-m£©x2=x2£¬
µÃ¦Á¡Ê£¨x1£¬x2£©£¬Í¬Àí¦Â¡Ê£¨x1£¬x2£©£¬
¡àÓÉf£¨x£©µÄµ¥µ÷ÐÔÖª0£¼F£¨x1£©£¼F£¨¦Á£©¡¢F£¨¦Â£©£¼F£¨x2£©£¬
´Ó¶øÓÐ|F£¨¦Á£©-F£¨¦Â£©|£¼|F£¨x1£©-F£¨x2£©|£¬·ûºÏÌâÉ裮
¢Úµ±m¡Ü0ʱ£¬¦Á=mx1+£¨1-m£©x2¡Ýmx2+£¨1-m£©x2=x2£¬
¦Â=mx1+£¨1-m£©x2¡Ümx1+£¨1-m£©x1=x1£¬
ÓÉf£¨x£©µÄµ¥µ÷ÐÔÖª0£¼F£¨¦Â£©¡ÜF£¨x1£©£¼F£¨x2£©¡ÜF£¨¦Á£©£¬
¡à|F£¨¦Á£©-F£¨¦Â£©|¡Ý|F£¨x1£©-F£¨x2£©|£¬ÓëÌâÉè²»·û£¬
¢Ûµ±m¡Ý1ʱ£¬Í¬Àí¿ÉµÃ¦Á¡Üx1£¬¦Â¡Ýx2£¬
µÃ|F£¨¦Á£©-F£¨¦Â£©|¡Ý|F£¨x1£©-F£¨x2£©|£¬ÓëÌâÉè²»·û£®
¡à×ۺϢ١¢¢Ú¡¢¢ÛµÃm¡Ê£¨0£¬1£©£®
µãÆÀ ±¾Ì⿼²éÀûÓõ¼Êý½â¾öº¬²»µÈʽµÄÏà¹ØÎÊÌ⣬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÖеµÌ⣮
A£® | $\frac{\sqrt{5}-1}{2}$ | B£® | $\frac{\sqrt{2}+1}{2}$ | C£® | $\sqrt{2}$+1 | D£® | $\sqrt{5}$-1 |
A£® | 12 | B£® | 14 | C£® | 16 | D£® | 18 |
A£® | 1-$\frac{3}{e}$ | B£® | 1-$\frac{2}{e}$ | C£® | 1-$\frac{1}{e}$ | D£® | 1-$\frac{3}{2e}$ |