题目内容
7.在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.(1)求等比数列{an}的通项公式;
(2)若数列{bn}满足bn=(n+2)log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Tn.
分析 (1)设数列列{an}的公比为q,由于2a1,a3,3a2成等差数列,可得2a1+3a2=2a3.再利用等比数列的通项公式即可得出;
(2)由bn=(n+2)log2an=(n+2)n,可得$\frac{1}{{b}_{n}}=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂项求和”即可得出.
解答 解:(1)设数列列{an}的公比为q,
∵2a1,a3,3a2成等差数列,
∴2a1+3a2=2a3.
∴$2{a}_{1}+3{a}_{1}q=2{a}_{1}{q}^{2}$,
化为2q2-3q-2=0,
解得q=2或q=-$\frac{1}{2}$.
∵q>0,∴q=2.
∴an=2n.
(2)∵bn=(n+2)log2an=(n+2)n,
∴$\frac{1}{{b}_{n}}=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴数列{$\frac{1}{{b}_{n}}$}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-2}-\frac{1}{n})+(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2({n}^{2}+3n+2)}$.
点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”、对数的运算性质,考查了推理能力与计算能力,属于中档题.
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |