题目内容
椭圆的一个焦点为,若椭圆上存在一个点,满足以椭圆短轴为直径的圆与线段相切于该线段的中点,则椭圆的离心率为( )
A. | B. | C. | D. |
A
解析试题分析:记线段PF1的中点为M,椭圆中心为O,连接OM,PF2则有|PF2|=2|OM|,,解得 .故选A.
考点:圆与圆锥曲线的综合.
练习册系列答案
相关题目
抛物线y=2x2的准线方程为( )
A. | B. | C. | D. |
[2014·泰安模拟]曲线+=1(m<6)与曲线+=1(5<n<9)的( )
A.焦距相等 | B.离心率相等 |
C.焦点相同 | D.准线相同 |
(2014·黄冈模拟)如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为( )
A.[2,+∞) | B.(,+∞) |
C. | D.(+1,+∞) |
(2011•山东)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( )
A.(0,2) | B.[0,2] | C.(2,+∞) | D.[2,+∞) |
(2013·四川高考)从椭圆+=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是( )
A. | B. | C. | D. |
以双曲线(a>0,b>0)的左焦点F为圆心,作半径为b的圆F,则圆F与双曲线的渐近线( )
A.相交 | B.相离 | C.相切 | D.不确定 |