题目内容
如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.
求证:(1)AC是⊙D的切线;(2)AB+EB=AC.
求证:(1)AC是⊙D的切线;(2)AB+EB=AC.
证明:(1)过点D作DF⊥AC于F;(1分)
∵AB为⊙D的切线,AD平分∠BAC,
∴BD=DF,(3分)
∴AC为⊙D的切线.(4分)
(2)在△BDE和△DCF中;
∵BD=DF,DE=DC,
∴△BDE≌△DCF,(6分)
∴EB=FC.(8分)
∵AB=AF,
∴AB+EB=AF+FC,
即AB+EB=AC.(10分)
练习册系列答案
相关题目
如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2
,则AC的长为( )
3 |
A、2
| ||||
B、3 | ||||
C、
| ||||
D、
|
如图,在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是( )
A、(0,
| ||||
B、(
| ||||
C、(
| ||||
D、(2,4] |