题目内容
已知函数
.
(1)若函数
的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数
的单调区间;
(3)若函数
在
上是减函数,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842297771.png)
(1)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842328537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842344206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842375283.png)
(2)在(1)的条件下,求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
(3)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842406778.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842375283.png)
(1)
;(2)函数
的单调递减区间是
;单调递增区间是
;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842438399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842484518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842500599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842516534.png)
试题分析:(Ⅰ)先求导数,再由函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842562527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240218425781053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842609927.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842640442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842672564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842687687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842703490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842734996.png)
由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842562527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842438399.png)
(2)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842796535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240218425781053.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842828266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842843597.png)
![]() | ![]() | ![]() | ![]() |
![]() | - | ![]() | + |
![]() | ![]() | 极小值 | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842313447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842484518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842500599.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021843062923.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842609927.png)
由已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842640442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842672564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021843140838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021843171565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842687687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240218432331080.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021843249484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842422383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021843280957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021842516534.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目