题目内容

已知向量
a
=(x2-3,1),
b
=(x,-y)
,(其中实数y和x不同时为零),当|x|<2时,有
a
b
,当|x|≥2时,
a
b

(1)求函数式y=f(x);
(2)求函数f(x)的单调递减区间;
(3)若对?x∈(-∞,-2]∪[2,+∞),都有mx2+x-3m≥0,求实数m的取值范围.
分析:(1)因为当|x|<2时,
a
b
a
b
=0得到y与x的关系式;当|x|≥2时,
a
b
时,得到
-y
x
=
1
x2-3
,联立得到f(x)为分段函数;
(2)要求函数f(x)的单调递减区间即分区间令y'<0求出x的范围即可;
(3)根据mx2+x-3m≥0解出m≥
x
3-x2
,分区间讨论x的范围得到f(x)的最大值,让m大于等于最大值即可求出m的范围.
解答:解:(1)当|x|<2时,由
a
b
a
b
=(x2-3)x-y=0
,y=x3-3x;(|x|<2且x≠0)
当|x|≥2时,由
a
b
.得y=-
x
x2-3

y=f(x)=
x3-3x,(-2<x<2且x≠0)
x
3-x2
.(x≥2或x≤-2)

(2)当|x|<2且x≠0时,由y'=3x2-3<0,
解得x∈(-1,0)∪(0,1),
当|x|≥2时,y′=
(3-x2)-x(-2x)
(3-x2)2
=
3+x2
(3-x2)2
>0

∴函数f(x)的单调减区间为(-1,1);
(3)对?x∈(-∞,-2]∪[2,+∞),都有mx2+x-3m≥0即m(x2-3)≥-x,
也就是m≥
x
3-x2
对?x∈(-∞,-2]∪[2,+∞)恒成立,
由(2)知当|x|≥2时,f′(x)=
(3-x2)-x(-2x)
(3-x2)2
=
3+x2
(3-x2)2
>0

∴函数f(x)在(-∞,-2]和[2,+∞)都单调递增
f(-2)=
-2
3-4
=2
f(2)=
2
3-4
=-2

当x≤-2时f(x)=
x
3-x2
>0

∴当x∈(-∞,-2]时,0<f(x)≤2同理可得,当x≥2时,有-2≤f(x)<0,
综上所述得,对x∈(-∞,-2]∪[2,+∞),f(x)取得最大值2;
∴实数m的取值范围为m≥2.
点评:考查学生利用导数研究函数单调性的能力,学会用数量积判断两个向量的垂直关系,理解平行向量及共线向量满足的条件,熟悉分段函数的解析式,理解函数恒成立时所取的条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网