题目内容
已知向量
=(x2,x+1),
=(1-x,t),若函数f(x)=
•
在区间(-1,1)上是增函数,t的取值范围是( )
a |
b |
a |
b |
A、[0,+∝] |
B、[0,13] |
C、[5,∝] |
D、[5,13] |
分析:利用两个向量的数量积公式求出函数f(x)的解析式,由题意可得f′(x)=-3x2+2x+t 在区间(-1,1)上大于0,
又二次函数f′(x)的对称轴为x=
,故有f′(-1)≥0,解不等式求得t的取值范围.
又二次函数f′(x)的对称轴为x=
1 |
3 |
解答:解:函数f(x)=
•
=x2(1-x)+t(x+1)在区间(-1,1)上是增函数,
故函数f(x)的导数f′(x)=-3x2+2x+t 在区间(-1,1)上大于0.
又二次函数f′(x)的对称轴为x=
,故有f′(-1)≥0,即-3-2+t≥0,
∴t≥5,
故选C.
a |
b |
故函数f(x)的导数f′(x)=-3x2+2x+t 在区间(-1,1)上大于0.
又二次函数f′(x)的对称轴为x=
1 |
3 |
∴t≥5,
故选C.
点评:本题考查两个向量的数量积公式,利用导数研究函数的单调性,二次函数的最值,判断f′(x)=-3x2+2x+t 在区间(-1,1)上大于0,是解题的关键.
练习册系列答案
相关题目