题目内容
18.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=a1+an+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$等于( )A. | $\frac{4028}{2015}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{4030}{2016}$ | D. | $\frac{2015}{2016}$ |
分析 a1=1,且对于任意的n∈N*都有an+1=a1+an+n,可得an+1-an=n+1,利用“累加求和”可得:an=$\frac{n(n+1)}{2}$,$\frac{1}{{a}_{n}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,再利用“裂项求和”即可得出.
解答 解:∵a1=1,且对于任意的n∈N*都有an+1=a1+an+n,
∴an+1-an=n+1,
∴当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+1
=$\frac{n(n+1)}{2}$,
当n=1时也成立,
∴an=$\frac{n(n+1)}{2}$,∴$\frac{1}{{a}_{n}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,
∴数列$\{\frac{1}{{a}_{n}}\}$的前n项和Sn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.
∴$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$=$\frac{2×2015}{2015+1}$=$\frac{4030}{2016}$.
故选:C.
点评 本题考查了数列的“累加求和”、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
13.设复数z1=l+2i,z2=l-ai,若z1•z2为实数,则实数a=( )
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
10.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=( )
A. | {0,1} | B. | {1,2} | C. | {0,1,2} | D. | ∅ |
7.已知α为第二象限角,sinα=$\frac{2\sqrt{5}}{5}$,则tan($α+\frac{π}{4}$)=( )
A. | -3 | B. | -1 | C. | -$\frac{1}{3}$ | D. | 1 |
6.设实数x,y满足$\left\{\begin{array}{l}y≤2x+2\\ x+y-2≥0\\ x≤2\end{array}\right.$,则$\frac{y-1}{x+3}$的取值范围是( )
A. | $(-∞,-\frac{1}{5}]∪[1,+∞)$ | B. | $[\frac{1}{3},1]$ | C. | $[-\frac{1}{5},\frac{1}{3}]$ | D. | $[-\frac{1}{5},1]$ |