题目内容
如图所示,点S在平面ABC外,SB⊥AC,SB=AC=2, E、F分别是SC和AB的中点,则EF的长是( )
A.1 B.
C. D.
【答案】
B
【解析】
试题分析:取BC的中点D,连接ED与FD
∵E、F分别是SC和AB的中点,点D为BC的中点
∴ED∥SB,FD∥AC
而SB⊥AC,SB=AC=2则三角形EDF为等腰直角三角形
则ED=FD=1即EF= ,故选B。
考点:本题主要考查点、线、面间的距离计算。
点评:灵活运用三角形中位线定理,以及异面直线所成角的应用,同时考查了转化与划归的思想,属于基础题。
练习册系列答案
相关题目
如图所示,点S在平面ABC外,SB⊥AC,SB=AC=2,E、F分别是SC和AB的中点,则EF的长是( )
A、1 | ||||
B、
| ||||
C、
| ||||
D、
|