题目内容
用表示非空集合中元素的个数,定义,若,,,且,设实数的所有可能取值构成集合,则=( )
A. | B. |
C. | D. |
B
解析试题分析:由已知得:或,当时,即由两个相等实根,即且没有实根,,即,,;当时,即由两个相等实根,即且由两个不等实根,,,或,不成立,当由两个不等实根,即且由两个相等实根,,,,,所以有3个值,即选B.
考点:1.二次方程根的个数;2.集合元素.
练习册系列答案
相关题目
记集合和集合表示的平面区域分别为,若在区域内任取一点,则点M落在区域的概率为( )
A. | B. | C. | D. |
已知集合,,则满足条件的集合的个数为( )
A. | B. | C. | D. |
设全集,集合,,则( )
A. | B. | C. | D. |
又则( )
A.a+bA | B.a+bB |
C.a+bC | D.a+bA,B,C中的任一个 |
集合的元素个数是 ( )
A.1 | B.2 | C.3 | D.4 |
A={x|x≠1,x∈R}∪{y|y≠2,y∈R},B={z|z≠1且z≠2,z∈R},那么( )
A.A=B | B.AB |
C.BA | D.A∩B=? |