题目内容
已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦长为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_ST/0.png)
(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三个顶点在抛物线L上,且直角顶点B的横坐标为1,过点A、C分别作抛物线L的切线,两切线相交于点D,直线AC与y轴交于点E,当直线BC的斜率在[3,4]上变化时,直线DE斜率是否存在最大值,若存在,求其最大值和直线BC的方程;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_ST/images1.png)
【答案】分析:(Ⅰ)联立方程组,利用弦长公式,直接求出p的值;
(Ⅱ)设A(
),C(
),设BC的斜率为k,
,求出kAC,得到直线AC的方程,求出ED的斜率,利用函数的单调性求出斜率AD的最大值,求出BC的方程.
解答:(Ⅰ) 解:由
解得A(0,0),B(2p,2p)…2分
∴
=AB=
,
∴p=
…5分
(Ⅱ) 解:B(1,1),设A(
),C(
),
=x1+x2,
设BC的斜率为k,则
⇒x2-kx+k-1=0,
△=k2-4k+4≥0,
又1+x2=k⇒x2=k-1,C(k-1,(k-1)2),
,
kAC=x1+x2=k-
-2,
直线AC的方程为y-(k-1)2=(k-
-2)[x-(k-1)],
令x=0,y=k-
,所以E(0,k-
),
AD:y-
=2x1(x-x1)⇒y=2x1x-
,
同理CD:y=2x2x-
,
联立两方程得D(
(k-
-2),
),
kED=
=
=
=-4
,
令u=
-k,在[3,4]递减,所以,当k=4时,kED最大为
,
所以,BC的方程为y-1=4(x-1)即4x-y-3=0…12分
点评:本题是中档题,考查直线与圆锥曲线方程的综合问题,设而不求的思想,韦达定理的应用,函数的单调性等知识,考查计算能力转化思想的应用.
(Ⅱ)设A(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/2.png)
解答:(Ⅰ) 解:由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/3.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/5.png)
∴p=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/6.png)
(Ⅱ) 解:B(1,1),设A(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/9.png)
设BC的斜率为k,则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/10.png)
△=k2-4k+4≥0,
又1+x2=k⇒x2=k-1,C(k-1,(k-1)2),
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/11.png)
kAC=x1+x2=k-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/12.png)
直线AC的方程为y-(k-1)2=(k-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/13.png)
令x=0,y=k-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/15.png)
AD:y-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/17.png)
同理CD:y=2x2x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/18.png)
联立两方程得D(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/21.png)
kED=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/25.png)
令u=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230526422658745/SYS201311012305264226587020_DA/27.png)
所以,BC的方程为y-1=4(x-1)即4x-y-3=0…12分
点评:本题是中档题,考查直线与圆锥曲线方程的综合问题,设而不求的思想,韦达定理的应用,函数的单调性等知识,考查计算能力转化思想的应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目