题目内容

已知向量=(Asinωx,Acosωx),=(cosθ,sinθ),f(x)=+1,其中A>0、ω>0、θ为锐角.f(x)的图象的两个相邻对称中心的距离为,且当时,f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)将f(x)的图象先向下平移1个单位,再向左平移ϕ(ϕ>0)个单位得g(x)的图象,若g(x)为奇函数,求ϕ的最小值.
【答案】分析:(Ⅰ)由已知可得f(x)=Asin(ωx+θ)+1,再由f(x)的图象的两个相邻对称中心的距离为,且当时,f(x)取得最大值3,可解A,w,θ;
(II)先由图象变换的规律解得g(x)的解析式,再由奇函数的性质得g(0)=0可求ϕ的最小值.
解答:解:(Ⅰ)∵=(Asinωx,Acosωx),=(cosθ,sinθ),
∴f(x)=+1=Asinωxcosθ+Acosωxsinθ+1
=Asin(ωx+θ)+1,
因为f(x)的图象的两个相邻对称中心的距离为,且当时,f(x)取得最大值3.
所以A=2,,解得ω=2,故f(x)=2sin(2x+θ)+1,
由f()=2sin(2×+θ)+1=3,解得
故f(x)的解析式为:f(x)=2sin(2x+)+1
(Ⅱ)由(Ⅰ)可知:将f(x)的图象先向下平移1个单位得函数y=2sin(2x+)的图象,
再向左平移ϕ(ϕ>0)个单位得g(x)的图象,则g(x)=2sin[2(x+ϕ)+],若g(x)为奇函数,
则g(0)=2sin(2ϕ+),即2ϕ+=kπ,(k∈Z),又ϕ>0,故ϕ的最小值为
点评:本题为向量与三角函数的综合应用,涉及数量积和图象的变换以及奇函数的特点,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网