题目内容

【题目】已知常数m≠0,n≥2且n∈N,二项式(1+mx)n的展开式中,只有第6项的二项式系数最大,第三项系数是第二项系数的9倍.
(1)求m、n的值;
(2)若记(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n , 求a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余数.

【答案】
(1)解:∵(1+mx)n的展开式中,只有第6项的二项式系数最大,

∴展开式共有11项,故n=10.

在(1+mx)10展开式中,第r+1项为

∴第二项系数为 ,第三项系数

∴45m2=90m,∴m=2(m=0舍)


(2)解:在 中,

令x=﹣9,得: =(1﹣9m)n

=(1﹣9×2)10=(﹣17)10=1710=(18﹣1)10

=

=

=

∴a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余数为1


【解析】(1)利用二项式系数的性质求得n=10,再根据第三项系数是第二项系数的9倍,求得m的值.(2)令x=﹣9,可得a0﹣a1+a2﹣a3+…+(﹣1)nan=(18﹣1)10 , 再把它按照二项式定理展开,求得它除以6的余数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网