题目内容
抛物线y2=4x上一点M(x0,y0)到焦点的距离为3,则x0=
A.
0
B.
C.
1
D.
2
已知函数f(x)=x(x-c)2(其中c为常数,c∈R)
(Ⅰ)若函数f(x)在定义域内有极值,求实数c的取值范围;
(Ⅱ)若函数f(x)在x=2处取得极大值,求实数c的值.
已知△ABC的三个内角A,B,C所对的边分别是a,b,c,且A=30°,B=45°,a=2,则b=________.
已知点,动点N(x,y),直线NP,NQ的斜率分别为k1,k2,且(其中“”可以是四则运算加、减、乘、除中的任意一种运算),坐标原点为O,点M(2,1).
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.
在直三棱柱ABC-A1B1C1中,AB=AC=2,AB⊥AC,D为BB1的中点.二面角B-A1C1-D的大小为α,试建立适当的空间直角坐标系,用向量法分别解答以下问题:
(Ⅰ)当AA1=2时,求:
(ⅰ)与所成角φ的余弦值
(ⅱ)C1D与平面A1BC1所成角的正弦值
(Ⅱ)当棱柱的高变化时,求cosα的最小值.
在等比数列{an}中,a1=-16,a4=8,则a7=
-4
±4
-2
±2
观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是Sn,按此规律推出:当n≥2时,Sn与n的关系式________.
设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图所示,则a=________.
在平面直角坐标系