题目内容

【题目】北京时间3月15日下午,谷歌围棋人工智能 与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格 .人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有 的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为 。若每次抽取的结果是相互独立的,求 的分布列,期望 和方差 .
附: ,其中 .

0.05

0.01

3.841

6.635

【答案】解:(Ⅰ)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而 列联表如下

非围棋迷

围棋迷

合计

30

15

45

45

10

55

合计

75

25

100


列联表中的数据代入公式计算,得

因为 ,所以没有理由认为“围棋迷”与性别有关.
(Ⅱ)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为 .由题意 ,从而 的分布列为

0

1

2

3


. .
【解析】本题主要考查了频率分布直方图,以及独立检验数学期望的求法的应用。(1)根据频率分布直方图填写2×2分布图,计算观测值,比较临界值即可得结论。(2)由频率分布直方图计算频率,将频率视为概率,然后由分布列,根据数学期望计算求解。
【考点精析】认真审题,首先需要了解频率分布直方图(频率分布表和率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网