搜索
题目内容
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF
2
=AD·BC.
试题答案
相关练习册答案
(1)见解析;
(2)见解析.
(1)由直线CD与⊙O相切,得∠CEB=∠EAB.
由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=
;
又EF⊥AB,得∠FEB+∠EBF=
,从而∠FEB=∠EAB.
故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,
得Rt△BCE≌Rt△BFE,所以BC=BF.
类似可证:Rt△ADE≌Rt△AFE,得AD=AF.
又在Rt△AEB中,EF⊥AB,故EF
2
=AF·BF,
所以EF
2
=AD·BC.
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一
点,AE为圆O的切线,求证:CD
2
=BD·EC.
如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.
如图,四边形ABCD是正方形,E是AD上一点,且AE=
AD,N是AB的中点,NF⊥CE于F,求证:FN
2
=EF·FC.
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。
求:(1)⊙O的半径;
(2)s1n∠BAP的值。
已知梯形ABCD的上底AD=8 cm,下底BC=15 cm,在边AB、CD上分别取E、F,使AE∶EB=DF∶FC=3∶2,则EF=________.
如图,⊙O是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E,连结BE.
求证:(1)BE=DE;
(2)∠D=∠ACE.
如图,AB是圆O的直径,AD=DE,AB=8,BD=6,则
__________
如图:两圆相交于点
、
,直线
与
分别与两圆交于点
、
和
、
,
,则
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总