题目内容
(5分)(2011•广东)已知{an}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q= .
2
解析试题分析:由已知{an}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.
解:∵{an}是递增等比数列,
且a2=2,则公比q>1
又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4
即q2﹣q﹣2=0
解得q=2,或q=﹣1(舍去)
故此数列的公比q=2
故答案为:2
点评:本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.
练习册系列答案
相关题目
已知数列的通项公式为,那么满足的整( )
A.有3个 | B.有2个 | C.有1个 | D.不存在 |