题目内容

已知椭圆C (ab>0)的离心率为,且经过点P(1,)。

(1)求椭圆C的方程;

(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆My轴有两个交点?

(3)设圆My轴交于DE两点,求点DE距离的最大值。   

 

【答案】

(1) +=1

(2) -4<x0

(3) 当x0=-时,DE的最大值为

【解析】本试题主要是考查了椭圆方程的求解以及结合圆的知识,求解圆与坐标轴的交点问题,以及直线与圆的位置关系的运用。

解:(1)∵椭圆+=1(ab>0)的离心率为,且经过点P(1,),

∴椭圆C的方程为+=1。………       5分

(2)易求得F(1,0)。设M(x0y0),则+=1,      

M的方程为(x-x0)2+(y-y0)2=(1-x0)2+y02

x=0,化简得y2-2y0y+2x0-1=0,⊿=4y02-4(2x0-1)2>0……①。

y02=3(1-)代入①,得3x02+8x0-16<0,解出 -4<x0..........10分

(3)设D(0,y1),E(0,y2),其中y1y2。由(2),得

DE= y2- y1===

x0=-时,DE的最大值为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网